
UNIX® Shell and Utilities

Introduction to the UNIX Shell Command Language
and Utilities, as Specified by POSIX.1 XCU

 2 / 39

Introduction:
What is a Shell?

● Command interpreter on UNIX and UNIX-like systems
● Allows users to control their systems
● Both a UI and an API for UNIX

 3 / 39

Introduction:
Brief History of UNIX Shells

● Concept from Multics
● Thomson shell (sh), 1971
● Bourne shell (sh), 1977
● C shell (csh), 1978
● Korn shell (ksh), 1983
● Almquist shell (ash), 1989
● GNU Bourne-Again SHell (bash), 1989

 4 / 39

Introduction:
Shell Input Methods

● Command file
● Command string
● Standard input
● Interactive input

 5 / 39

Basic Concepts:
File Descriptors

● Integers that identify open files and details thereof
● Every UNIX process, including the shell and utilities, has

a set of file descriptors
● Each shell command has its own set of file descriptors
● Three standard file descriptors are provided by the

system:

fd 0 Standard input
fd 1 Standard output
fd 2 Standard error

 6 / 39

Basic Concepts:
Exit Status

● Every UNIX process exits with a numeric “exit status”
between 0 and 255

● Each shell command has its own exit status
● Standard exit statuses:

0 Success
1–125 Failure
126 Command found but not executable
127 Command not found
128–255 Command terminated by signal

 7 / 39

Basic Concepts:
Shell Execution Environment

● The current “state” of the shell
● Consists of:

– Open files

– Working directory

– Shell variables

– Shell functions

– …

 8 / 39

Basic Concepts:
Shell Execution Environment

● Subshell environment:
– Created as a duplicate of the shell environment

– Changes made to the subshell environment do not affect
the shell environment

 9 / 39

String Matching:
Pattern Matching Notation

● A string of ordinary characters matches itself
● A <question-mark> is a pattern that matches any

character
● An <asterisk> is a pattern that matches any string,

including the null string
● A bracket expression matches any character

 10 / 39

Basic Shell Grammar:
Comments

● Text after an unquoted '#' character
● Ignored by shell

 11 / 39

Basic Shell Grammar:
Shell Commands

● Everything in shell command language is centered
around shell commands

● Simple commands
– Most simply:

command-name [argument1] ...

– command-name is executed with arguments, if any

 12 / 39

Basic Shell Grammar:
Quoting

● Removes the special meaning of certain characters or
words

● Escape character (backslash)
– Preserves the literal meaning of the following character

– If a newline follows the backslash, the shell interprets it as
a line continuation

● Single quotes
– Preserve the literal meaning of each character within the

quotes

– A single quote cannot appear within single quotes

 13 / 39

Basic Shell Grammar:
Quoting

● Double quotes
– Preserve the literal meaning of each character within the

quotes, with exceptions

– The dollar sign ('$') and backquote ('`') characters retain
their special meaning introducing word expansions

– The backslash ('\') character retains its special meaning as
an escape character

 14 / 39

Parameters:
Assignment

● Actually part of simple commands, e.g.:

foo=1
foo=1 bar=2
baz=3 qux=4 cmdname arg1 arg2

● If there is a command name, variables are set only in the
environment of the command

● If there is no command name, variable assignments
affect the current execution environment

 15 / 39

Parameters:
Expansion

● Simple parameter

${parameter}

● Use default values

${parameter:-word}

● String length

${#parameter}

 16 / 39

Parameters:
Expansion

● Remove smallest prefix pattern

${parameter#word}

● Remove largest prefix pattern

${parameter##word}

● Remove smallest suffix pattern

${parameter%word}

● Remove largest suffix pattern

${parameter%%word}

 17 / 39

Parameters:
Types

● Positional parameters
– Decimal values greater than 0

– Initially assigned when shell is invoked

– Temporarily replaced when a shell function is invoked

– Can be reassigned with the set utility

 18 / 39

Parameters:
Types

● Special parameters

@ All positional parameters
* All positional parameters
The number of positional parameters
? The exit status of the most recent pipeline
0 The name of the shell or shell script
…

 19 / 39

Parameters:
Types

● Variables
– Set by the user or application with parameter assignment

● Environment variables

IFS List of characters used for field splitting
LANG Default value for internationalization variables
LINENO Current line number within a script
PATH String affecting command search
PS1 Initial interactive shell prompt
PS2 Subsequent interactive shell prompt
PWD Current working directory
…

 20 / 39

Word Expansions:
Command Substitution

● Allows the standard output of a command, less any
trailing <newline> characters, to be substituted for the
command name itself

$(command)
`command`

● command is executed in a subshell environment
● Only field splitting and pathname expansion are

performed on the results, and only if the substitution does
not occur inside double-quotes

 21 / 39

Word Expansions:
Arithmetic Expansion

● Evaluates an arithmetic expression and substitutes its
value

$((expression))

● Performs long integer arithmetic with shell variables of
the forms “x” and “$x” and decimal (e.g. “42”), octal (e.g.
“052”), and hexadecimal (e.g. “0x2A”) constants

 22 / 39

Word Expansions:
Field Splitting

● Characters in the IFS are used as delimiters to split the
results of previous expansions into fields

1. If the value of IFS is null, no field splitting is performed

2. If IFS is unset or its value is <space>, <tab>, and
<newline>, any sequence of these whitespace characters
at the beginning or end of the input is ignored and any
such sequence within the input delimits a field

For example, the input:

<tab>foo<space><space>bar<space><newline>

yields two fields: “foo” and “bar”

 23 / 39

Word Expansions:
Field Splitting

● Characters in the IFS are used as delimiters to split the
results of previous expansions into fields

3. Otherwise:
● Whitespace (<space>, <tab>, or <newline>) IFS characters found

at the beginning or end of the input are ignored
● Non-whitespace IFS characters found in the input, along with any

adjacent whitespace IFS characters, delimit fields
● Whitespace IFS characters found in the input delimit fields

For example, if the value of IFS is “:<space>”, the input:

foo:bar<space>:<space>baz:<space>:qux<space>quux

yields six fields: “foo”, “bar”, “baz”, “”, “qux”, and “quux”

 24 / 39

Word Expansions:
Pathname Expansion

● Each field in the input is expanded using pattern
matching notation to match files, except:
– A <slash> character in a pathname is not matched by

<question-mark> or <asterisk> special characters or
bracket expressions

– A leading <period> in a filename is not matched by
<question-mark> or <asterisk> special characters or
certain bracket expressions

– If the pattern string does not match any pathnames, it is
left unchanged

 25 / 39

Redirection

● Redirecting input

[n]<word

● Redirecting output

[n]>word

[n]>|word

● Appending redirected output

[n]>>word

 26 / 39

Redirection

● Here-Document
– Redirection of lines in a shell input file

[n]<<word
here-document
delimiter

[n]<<-word
here-document
delimiter

– If no characters in word are quoted, parameter expansion,
command substitution, and arithmetic substitution are
performed on here-document

 27 / 39

Shell Commands:
Pipelines

● A sequence of one or more commands separated by the
'|' operator

[!] command1 [| command2 ...]

● Exit status:
– If the reserved word ! does not precede the pipeline, the

exit status is the exit status of the last command

– Otherwise, the exit status is the logical NOT of the exit
status of the last command

 28 / 39

Shell Commands:
Lists

● AND list

– A sequence of one or more pipelines separated by the “&&”
operator

command1 [&& command2] ...

– Exit status: that of the last command

● OR list

– A sequence of one or more pipelines separated by the “||”
operator

command1 [|| command2] ...

– Exit status: that of the last command

 29 / 39

Shell Commands:
Lists

● Sequential list
– A sequence of one or more AND-OR lists separated by the

';' operator and optionally terminated by ';' or <newline>

command1 [; command2] ...

– Exit status: that of the last command

● Asynchronous list
– A sequence of one or more AND-OR lists separated by the

'&' operator and optionally terminated by '&' or <newline>

command1 [& command2] ...

– Exit status: zero

 30 / 39

Shell Commands:
Compound Commands

● Grouping commands
– Execution in a subshell environment:

(compound-list)

– Execution in the current process environment:

{compound-list;}

– Exit status: that of compound-list

 31 / 39

Shell Commands:
Compound Commands

● if conditional construct

if compound-list
then
 compound-list
[elif compound-list
then
 compound-list] ...
[else
 compound-list]
fi

 32 / 39

Shell Commands:
Compound Commands

● case conditional construct

case word in
 [(]pattern1) compound-list;;
 [[(]pattern[| pattern] ...)
 compound-list;;] ...
 [[(]pattern[| pattern] ...)
 compound-list]
esac

 33 / 39

Shell Commands:
Compound Commands

● while loop

while compound-list-1
do
 compound-list-2
done

● until loop

until compound-list-1
do
 compound-list-2
done

 34 / 39

Shell Commands:
Compound Commands

● for loop

for name [in [word ...]]
do
 compound-list
done

 35 / 39

Shell Commands:
Function Definition Command

● A function is a user-defined command to call a compound
command with new positional parameters

● A function is defined with a “function definition command”

fname() compound-command[io-redirect ...]

● compound-command is commonly a grouping command
that executes in the current process environment, e.g.:

fname()
{
 compound-list
}

 36 / 39

Command Search and Execution:
General Procedure

● If the command name does not contain any <slash>
characters, the shell tries to execute a special built-in
utility, a shell function, or an external utility found in a
directory listed in the PATH

● If the command name contains at least one <slash>, the
shell executes the external utility

 37 / 39

Command Search and Execution:
External Utilities

● Separate utility environment
● Current user must have execute permission on the file
● Many OS kernels read a “magic number” from the first

few bytes of an executable file to determine its type
– Linux does this using filesystem “binfmt” modules

– If the magic number is the ASCII string “#!” and the first
line is of the following form:

#! interpreter [argument]

interpreter is called with argument, if any, the command
name, and the remaining command arguments, if any

 38 / 39

Command Search and Execution:
External Utilities

● If the utility cannot be executed and is a text file, a new
shell is executed with the command name as its first
operand

UNIX® Shell and Utilities: Introduction to
the UNIX Shell Command Language and

Utilities, as Specified by POSIX.1 XCU

Copyright © 2012 Patrick “P. J.” McDermott

Permission is hereby granted to use this presentation under the
terms of the Creative Commons Attribution-ShareAlike license,

either version 3.0 Unported or (at your option) any later version.

Permission is hereby granted to use this presentation under the
terms of the GNU General Public License as published by the

Free Software Foundation, either version 3 of the License or (at
your option) any later version.

This presentation is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the licenses for more details.

UNIX is a registered trademark of The Open Group.
POSIX is a registered trademark of the IEEE.

